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Abstract 

Measuring the infrared signature of large civilian aircraft has become increasingly 

important due to the proliferation of man-portable air defense systems (MANPADS) and 

the increasing threat of their use by terrorists.  Because of the range of these shoulder-

fired weapons, most aircraft flying over 20,000 feet are safe from the threat; however, 

aircraft taking-off or landing are extremely vulnerable.   

A radiometric model was developed to simulate a large commercial aircraft’s 

infrared intensity during these two critical phases of flight.  The radiometric model was 

largely based on the dimensions of a Boeing 747-400 aircraft.  It is capable of simulating 

elevation angles between -20º and +20º, as well as 360º in azimuth in its projected area 

analysis of the faceted model.  The model utilizes an obscuration matrix to determine 

which parts of the aircraft are in view by the observer and thus contribute to the aircraft’s 

intensity.  A simple one-bounce reflection matrix was also included to incorporate 

reflections of hot parts off other body parts, as well as earth- and sky-shine contributions 

to the overall intensity.  Various atmospheric scenarios can be loaded into the model to 

incorporate atmospheric transmittance and radiance effects in the simulation.  

Measurements taken at the Air Force Research Laboratory’s Optical Measurement 

Facility are used to create material matrices which account for angle-dependent 

emissivity and reflectance.   

A graphical user interface (GUI) was developed to allow a user to change 

variables and view the resultant aircraft intensity as a function of elevation and azimuth 
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angles.  A graphical output of the faceted model assists in visualizing aircraft hot parts, 

reflections, and/or obstructed parts to ident y significant contributions to the aircraft’s 

infrared intensity.   

if
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MODELING THE INFRARED INTENSITY OF A LARGE COMMERICAL 
AIRCRAFT 

ircraft system [21].  The IR missile effectiveness was clearly demonstrated in the 1994-

1996 Chechnyan war, where 40% to 60% of aircraft losses were attributed to IR missile 

strikes [12].  Its proven record against military aircraft also makes the IR-guided missile a 

serious terrorist threat to commercial aircraft.    

The type of surface-to-air missile (SAM) most likely to be employed against 

commercial aircraft is the man-portable air defense system (MANPADS), also known as 

a shoulder-fired missile.  MANPADS are lightweight, transportable, inexpensive, and 

fully capable of striking both military aircraft and commercial airliners.  These systems 

have reportedly been proliferated over the years due to the breakup of the Soviet Union in 

the early 1990’s and even US support of the Mujahideen in Afghanistan in the 1980’s 

[16], [19].  These proliferated systems have already been used against civilian aircraft.  

Over the past 25 years, there have been 35 shoulder-fired missile attacks on civilian 

aircraft.  Of these attacks, 24 resulted in crashes with 500 fatalities [10].   

 

1I   Introduction 

1.1 The Threat of Infrared-Guided Missiles against Civilian Aircraft 

Since its advent in the early 1950’s, the infrared (IR)-guided missile has been the 

most effective anti-aircraft weapon developed.  From the Vietnam conflict through 

Operation Desert Storm, IR missiles have shot down more aircraft than any other anti-

a
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Recent events are clear evidence that terrorists are willing and capable of using 

IR-guided missiles against civilian aircraft. For example, in June 2002, a missile tube 

fro , a 

US Air Force base in Saudi Arabia [14].  The missile had apparently been launched, but 

no US aircraft were struck.  In Nov

li passengers 

from M

 strikes, to near-hits, and lastly to a 

success

 is still a source 

of contention and has yet to be appropriated.  In a separate effort called the Large Aircraft 

  

m a Soviet-made SA-7 was discovered near the perimeter of Prince Sultan Air Base

ember of the same year, two shoulder-fired IR-guided 

missiles were launched against an Arkia Boeing 757 carrying over 270 Israe

ombasa, Kenya [18].  Luckily for those on board, the missiles missed the airplane.  

In August 2003, a Briton was arrested for attempting to smuggle a Russian-made SA-18 

MANPAD into the US for the purpose of shooting down a commercial airliner [3].  Most 

recently in November 2003, a DHL Airbus A300B4-200 freighter was struck by a SA-7 

heat-seeking missile while departing Baghdad International Airport [11].  The aircraft 

lost hydraulic controls, but was able to land thanks to the well-trained pilots.  These 

events show the progression from attempted

ful strike.  These only represent the civilian cases that made the news.  There are 

various reports of military aircraft (mainly helicopters) being downed in Iraqi operations, 

but details are sparse [2].      

In May of 2003, the Department of Homeland Security submitted a plan to 

Congress detailing the implementation of an anti-missile system on a single commercial 

aircraft type within two years [2].  Fiscal year 2004 funding of the program was approved 

by The Department of Homeland Security Appropriations Act for 2004.  Consequently, 

Congress granted $60 million for development and testing of an IR countermeasure 

system.  Funding for installation of these systems on the commercial fleet
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Surviva

D modeling in MATLAB® is followed by a description of 

how th

bility Initiative (LASI), the United States Air Force is exploring ways commercial 

aircraft can be hardened to improve their chances of surviving a missile strike.  Both the 

Department of Homeland Security and the US Air Force view the IR missile as a 

formidable terrorist threat to commercial aircraft. 

1.2 Thesis Overview 

1.2.1 Purpose 

The objective of this thesis is to develop a desktop tool that is capable of 

identifying IR signature trends of a large commercial aircraft.  Once these trends have 

been identified, planners can focus their use of robust IR codes to more precisely evaluate 

vulnerabilities.   

1.2.2 Organization 

Chapter I, just presented, highlights the increasing threat to commercial aircraft 

providing the impetus for this thesis.  Chapter II covers radiometry fundamentals and 

presents the dimensions of the Boeing Commercial Aircraft 747-400 which serves as the 

basis for the faceted model (sometimes referred to as a wire-frame model).  In Chapter 

III, a short introduction to 3-

e faceted model was created and errors associated with facetization.  The 

obscuration and reflection matrices and their functions in the radiometric model are then 

introduced.  The effects of aircraft surface properties and atmospheric conditions are then 

explored.  Chapter III concludes with the radiometric calculations at the heart of the 

radiometric model.  The graphical user interface (GUI) makes the radiometric model a 

useful desktop tool and is discussed in Chapter IV.  Several examples of how the 
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radiometric model is exercised using the GUI are presented.  Chapter V concludes the 

thesis and lists recommendations for future work.          
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2II   Background 

2.1 Overview 

Fundamental radiometric concepts incorporated in this thesis are outlined in this 

chapter.  Blackbody radiation theory, emissivity, and reflectance are extensively used in 

the radiometric model.  The relationship between emissivity and reflectance given by 

Kirchoff’s Law is important since reflectance measurements are easier, and thus more 

common, than emissivity measurements.  Chapter II concludes with the selection of the 

Boeing 747-400 as the basis for the faceted model.     

2.2 Radiometry Review 

2.2.1 Infrared Spectrum 

 All matter in the known universe absorbs and re-emits energy unless it is at a 

temperature of absolute zero (0 K).  The energy emitted by this matter is in the form of 

electromagnetic radiation, which can be arranged by its wavelength or frequency within 

the electromagnetic spectrum.  The portion of the spectrum bounded by visible light on 

one side and microwaves on the other is called the infrared spectrum.  Since heated 

objects radiate in the infrared, the terms heat and infrared are sometimes used 

interchangeably1 [9].  The prefix infra is derived from the Latin word meaning below.  

Infrared, it follows, means below red and has a lower frequency than red visible light.  

Figure 2-1 depicts a portion of the electromagnetic spectrum including the infrared region 

which spans from approximately 0.7-1000 microns (µm).  The IR spectrum is divided 

into five regions:  the shortwave infrared region (SWIR) from 0.7-3 µm, midwave 

                                                 

1 The object need only be at a finite temperature greater than absolute zero. 
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infrared region (MWIR) from 3-5 µm, longwave infrared region (LWIR) from 8-14 µm, 

and the Far/Extreme IR regions from 14-1000 µm.  Infrared radiation in the region from 

5-8 µm is generally excluded from the spectrum since IR signals in this band are severely 

u e and provide no detection capability.  This thesis will focus 

m ranges and refer to them as the midwave and longwave 

bands, 

atten ated by the atmospher

on the 3-5 µm and 8-12 µ

respectively. 

2.2.2 Terminology 2 

One of the most significant properties of the electromagnetic wave is that it can 

transport energy, which is measured in joules (J) [8].  The time rate of change of energy 

(J/s) is measured in watts (W) and is referred to as radiant flux (Φe).  The radiometric 

terms and their units are presented in Table 2-1.  Of these terms, radiance (Le), is perhaps 

the most versatile of all and is defined as the flux emitted by an extended source3 per unit 

projected source area (As·cos θs) per unit solid angle4 (Ωd).   

                                                 

2 Only energy-derived terms (based on the joule as the fundamental quantity) are discussed.  Photon-
derived terms (based on the number of photons) are not discussed.   
3 An extended source is one that has appreciable area compared to the square of the distance from the 
source.   
4 The solid angle is measured in steradians (sr) and is the ratio of an area on the surface of a sphere to the 
square of the radius: Ω = A/r2 [6]. 

Figure 2-1:  The infrared bands and their location on the electromagnetic spectrum. 
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Table 2-1:  The energy-derived radiometric terms and their respective units. 

Symbol Quantity Units

     Qe      Energy      joule 

     Φe      Flux      watt 

     I      Intensity      watt·sr -1e

     Ee      Irradiance      watt·cm-2

     Me      Exitance      watt·cm-2

     Le      Radiance      watt·cm sr -2 -1

 

Radiance has units of W·cm ·steradian  and is given in differential form by  −2 −1

2

cos
e

e
s s d

L
A θ

∂ Φ
=
∂ ∂Ω

,     (Eq 2-1) 

where 

2
d d dcos /A Rθ∂Ω = ∂ .    (Eq 2-2) 

The distance from the source to the detector is R and the area of the detector is A .  The 

angles subtended from the line connecting the source and detector to the normals of both 

the source and detector are θ  and θ , respectively.  Figure 2-2 illustrates these angles, as 

d

s d

Figure 2-2:  Angles and distances used 
in radiometric calculations

R
θd

Source 
A

Aθs

s Detector
dsn

dn
R

θd
Source 

A
Aθs

s Detector
dn

dsn
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well as s can 

easily be derived from n (2-1 ample, the equation can be rearranged to 

solve for differential 2Φe,   

     (Eq 2-3) 

By integrating both sides twice, the ri

=Φ se dA  (Eq 2-4) 

Flux is synonymous with power and can either be emitted by a surface or incident 

on a surface.  To distinguish between the two cases, there are two respective terms: 

exitance (Me) and irradiance (Ee), both of which have 

the flux emitted per unit source area into a hemisphere of 2π steradians and can be found 

stituting for ∂Ωd from Equation (2-2), rearranging Equation (2-4), and then 

integrating with respect to the differential detector area: 

 the distance between the source and detector, R.  The other radiometric term

 Equatio ).  For ex

 flux, ∂

ds Ω∂ .   see AL ∂=Φ∂ θcos2

 total flux is de ved: 

∫ ∫Ωs dA eL θcos Ωdsd .    

units of W·cm-2.  Exitance (Me) is 

by sub

2cos cos cos
d d

e e
A

s

L
e e s d s d dM L d dAθ θ θ= = Ω =∫ ∫ .     (Eq 2-5) 

e

Equation (2-4), integrating with respect to the differential source area instead: 

A RΩ

∂Φ
∂

Irradiance (E ) is the flux received per unit detector and is similarly derived from 

2 cos cos
s

e e
e sA

d

L
d sE dA

A R
θ θ∂Φ

= =
∂ ∫ .     (Eq 2-6) 

The source is considered a point source if its area is not significant with respect to the 

square of the distance to th  term to quantify flux e detector (As << R2).  The radiometric
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from a point source is intensity (Ie).  Intensity can be thought of as flux per unit solid 

angle (W·steradian-1) and is calculated from Equation (2-4) by rearranging and then 

integrating with respect to the source area.   

∫=Ω∂
Φ∂

=
sA sse

d

e
e dALI θcos       (Eq 2-7)    

 If the area of the source and detector are both much smaller than the distance 

between them squared (As,A 2) and the detector is or

line connecting it to the source (θd≈0), then Equations (2-1) through (2-7) simplify as 

follows

d<<R iented with its normal along the 

, respectively: 

cose
d s s

L
A

e

θ
Φ

≅
Ω

,      (Eq 2-8) 

2d
dA

R
Ω ≅ ,            (Eq 2-9) 

cose e d s sL A θΦ ≅ Ω ,     (Eq 2-10) 

2 cose e d
e

s

L AM
A R sθ
Φ

≅ ≅ ,        (Eq 2-11) 

2 cose e s
e s

d

L AE
A R

θΦ
≅ ≅ ,       (Eq 2-12) 

cose
e e s

d

I L A sθ
Φ

≅ ≅
Ω

.      (Eq 2-13) 
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An assumption often used in radiometric problems is that sources are Lambertian 

radiators, whose radiance is independent of view angle, θs
5.  Lambertian sources can also 

be thought of as perfectly diffuse sources.  Equation (2-14) provides the relationship 

between exitance and radiance for a planar, Lambertian source [6]. 

ee LM π=    

The radiance, exitance, and irradiance terms presented thus far are independent of 

the infrared radiation wavelength (λ).  In reality, the quantities are spectral in nature – 

that is, they are not distributed uniformly over all wavelengths.  The following section 

will specifically discuss the spectral nature of exitance. 

2.2.3 Blackbody Radiation Theory 

A blackbody is a perfect radiator and emits t

unit time from a surface area in a wavelength interval that any body can radiate at a given 

kinetic temperature [6].  Any surface in thermodynam annot

photons than a blackbody unless it contains fluorescent or radioactive materials.  The 

blackbody is the ultimate thermal radiator and provides a benchmark to which any other 

source may be compared.   

The radiant properties of blackbodies are described by Planck’s Radiation Law, 

which evaluates the spectral6 exitance of a blackbody at a given tempe ture a

      (Eq 2-14) 

he maximum number of photons per 

ic equilibrium c  radiate more 

ra s follows: 

( ) ( )1
2, /5

2

−
= kThce e

hcTM λλ
πλ ,          (Eq 2-15) 

                                                 

5 Equation (2.1) still shows radiance dependent on cos θs; however, this is due to the projected area term, 
As·cos θs, and not a direct dependence on θs (i.e., non-Lambertian implies Le(θs)).   
6 Spectral implies as a function of wavelength. 
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where 

exitance divided by π, 

or: 

λ is the wavelength in microns (µm), T is the temperature in Kelvin (K), h is 

Planck’s constant (≈ 6.63 × 10−34 J·s), k is Boltzmann’s constant (≈ 1.38 × 10−23 J·K−1), 

and c is the speed of light (≈ 3.00 × 108 m·s−1).  Since a blackbody is perfectly 

Lambertian, Equation (2-14) implies that its radiance is simply the 

( ) ( )1
2

/5

2

−kThce e
hc
λλ

, =TL λ .        (Eq 2-16) 

Figure 2-3 shows the blackbody exitance curves as described in Equation (2-15) for 

temperatures varying from 1000-1500 K.  Figure 2-3 also illustrates a decrease in the 

wavelength of peak exitance with an increase in temperature.  The relationship between 

the wavelength of peak exitance and temperature can be found by setting the partial 

1000 K
1100 K

1200 K

1300 K

00 K14

1500 K

1000 K
1100 K

1200 K

1300 K

00 K14

1500 K

Figure 2-3: The solid lines represent the blackbody curves for varying 
temperatures.  The broken line is the Wien’s Law hyperbola and 
intersects the blackbody curves at the exitance peaks. 
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derivative of Equation (2-15) to zero and solving for wavelength at maximum exitance: 

0),(
=

∂
∂

λ
λ TM e .            q 2-17) 

The result is termed the Wien Displacement Law [6], 

(E

( )
( )KT

mKµλ 2898
max = ,     (Eq 2-18) 

and is depicted in Figure 2-3 as a hyperbola crossing each of the exitance peaks.  

Equation (2-18) can be rearranged to solve for temperature, allowing one to easily 

calculate the temperature of the blackbody given its peak wavelength from its blackbody 

curve.   

To find the total exitance from a blackbody at a temperature, T, Equation (2-15) is 

integrated over all wavelengths as shown in Equation 2-19. 

( ) ( )∫
∞

−
=

0 /5

2

1
2 λ

λ
π

λ d
e

hcTM kThce .           (Eq 2-19) 

The resulting expression from the integration in Equation 2-19, 

( ) 4 ,            (Eq 2-20) 

 is known as the Stefan-Boltzmann Law where σe (≈ 5.67 × 10−12 W·cm−2·K−4) is the 

Stefan-Boltzman constant. 

  While ideal blackbodies are useful in comparisons and near-ideal blackbodies are 

often used for calibration, real sources radiate differently than blackbodies.  Therefore, 

real source

TTM ee σ=

s must be characterized in terms of their emissivity.  
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2.2.4 Emissivity 

Emissivity, ε, is the measure of how closely the spectral exitance of a real source 

corresponds to that of a blackbody.  Since the blackbody represents the ideal, then the 

lackbody curve at the same 

temperature as the source.  Therefore, emissivity is a dim

following constraint:  0 ≤ ε ≤ 1.  Quantitatively, emissivity is defined as the ratio of the 

exitance of any non-blackbody source cannot exceed the b

ensionless quantity with the 

spectral exitance of the actual source and the spectral exitance of a blackbody at the same 

temperature: 

( )( ) ( )blackbodye

sourcee

TM
T

,
,

λ
TM ,λ

λε = .         (Eq 2-21) 

A blackbody has an emissivity of one, whereas a real source will have an 

emissivity of less than one.  If the emissivity of a real source is independent of 

wavelength, then that source is called a graybody and Equ on (2 1) can

as: 

ati -2  be re-written 

( )
( )

,
( )

,
e graybody

e

T
M T

ε
λ

= .    (Eq 2-22) 

The spectral exitance curve for a graybody will follow that of a blackbody of the same 

, over particular IR bands, some sources act as a graybody.  

M Tλ

blackbody

temperature, but will be scaled by the emissivity.  Realistically, there are no true 

graybody sources; however

At the IR bands being considered by this thesis, the aircraft surface is treated as a 

graybody with a dependence on the angle of incidence as discussed in Chapter III.   
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2-10 

ivity of a source is dependent on wavelength (ε (λ)), then that source 

is calle

find the spectral exitance of a real source: 

)

If the emiss

d a selective radiator.  The spectral exitance curve for a selective radiator will still 

be bounded by the spectral exitance curve of a blackbody, but may not have the same 

shape as the blackbody curve.  A comparison of spectral exitance curves between a 

blackbody, graybody, and selective radiator at 1000 K is illustrated in Figure 2-4.  Note 

that the blackbody and graybody curves peak at the same wavelength.  The graybody and 

selective emitter shown are bounded by the blackbody curve.  Equation (2-21) can be 

rearranged to 

 ( ) ( ) ( ) ( ) ( 1
2,,,, /5

2

−
=⋅= kTT λλ

λ (Eq 2-23) hcblackbodyesourcee e
hcTMTTM πελλελ .  

Figure 2-4: The curve with the highest peak is the spectral exitance 

for a selective radiator.  The selective radiator exhibits different 
curve for a blackbody at 1000 K.  The irregularly shaped curve is that 

emissivities for different wavelength bands.  The graybody curve 
follows that of the blackbody, but is scaled by the emissivity (0.6 in 
this case). 



 

To find total exitance of the real source, one must integrate over all wavelengths: 

( ) ( ) ( )∫ −
=

0 /5 1
, λ

λ
λε λ d

e
TTM kThce .    (Eq 2-24) 

If the source is a graybody, the emissivity term is not a function of wavelength and can be 

factored out of the integral.  The integral without the emissivity term is simply the Stefan-

Boltzmann Law and so the total exitance for the graybody is:  

∞ 22πhc

( ) TTM egbe εσ= . 4            (Eq 2-25) 

Obviously, s issivity for a graybody is less than one, its total exitan w

be less than that of a blackbody at the same temperature.  Recall from Section 2.2.1, this 

thesis will focus on the 3-5 µm and 8-12 µm bands.  As a result, the Stefan-Boltzmann 

Law is not practical for this thesis.  Instead, exitance will be computed over the band of 

interest.  Therefore, Equation (2-23) becomes 

ince em ce ill always 

( ) ( ) ( )
2

1
5 /

2,
1e hc kT

hc2

M T T
e

λ

λλ

π dε λ λ
λ

=
−∫

.
   (Eq 2-26)  

Section 3.7 will discuss how the emissivity for a particular paint sample is independent of 

wavelength, but dependent on angle of incidence.  And thus, Equation (2-26) is further 

refined into the following: 

( ) ( ) ( )
2

1

2

5 /

2,
1e hc kT

hcM T d
e

λ

λλ

πθ ε θ λ
λ

=
−∫ .  (Eq 2-27) 
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2.2.5 Kirchoff’s Law 

Radiant energy incident on a surface in thermal equilibrium may undergo three 

processes:  a portion of the energy may be absorbed, a portion

portion may be transmitted.  The ratios of these three portions of energy to the original 

 may be reflected, and/or a 

incident energy are termed absorptance (α), reflectance (ρ), and transmittance (τ), 

respectively.  The conservation of energy requires that the three fractions equal unity: 

1α ρ τ+ + = ,          (Eq 2-28) 

where 

,

,

.

absorbed

reflected

incident

incident

α

ρ

incident

transmittedτ

Φ
≡
Φ

Φ
≡
Φ

Φ
Φ

        (Eq 2-29) 

Kirchoff observed that, at a given te

≡

mperature, the ratio of the exitance of a 

graybody to its absorptance was constant for all materials and equal to the exitance of a 

blackbody at the same temperature.  This observation is known Ki hoff’s

can be stated as [9]: 

as rc  Law and 

( , )e graybody
e blackbody

M T
( , )M T

λ
λ= .    (Eq 2-30) 

quation (2-22) can be rearranged so that the exitance 

from a graybody is equal to the product of its emissivity and the exitance of a blackbody 

at the same temperature. Substituting into Equation (2-30) yields 

α

From the discussion on emissivity, E
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( , )
( , )e blackbody

e blackbody

M T
M T

ε λ
λ

α
⋅

=  .       (Eq 2-31) 

ue 

material yields 

Equation (2-31) implies that emissivity is equal to absorptance (ε = ρ), leading to the 

much recognized paraphrasing of Kirchoff’s law as “a good absorber is a good emitter.”   

Opaque materials, such as most aircraft surfaces, do not transmit energy (τ = 0).  Using 

Kirchoff’s Law to replace absorptance with emissivity in Equation (2-28) for an opaq

1ε ρ+ = .         (Eq 2-32) 

This relationship allows the emissivity of a material to be determined from its reflectance, 

which is generally easier to measure [9].   

2.3 A Large Commercial Aircraft 

The faceted model was intended to be generic in nature but still based on a real 

aircraft.  The aircraft chosen to model is the Boeing 747-400 four-engine passenger jet.  

The 747-400 depicted in Figure 2-5 served as 

dimensions and configuration of the 747-400, not to exactly replicate it.  Simple shapes 

s parts of the aircraft as will be discussed in Chapter III.  

The main fuselage is represented by a cylinder, so the sign

odel manufactured by 

HobbyCraft of Canada.  Default engine temperatures in the graphical user interface 

the basis for the dimensions used in the 

creation of the various aircraft parts.  The faceted model was meant to reflect the 

were used to create the variou

ature Boeing 747 hump (see 

Figure 2-5, side view) is not modeled.  The dimensions were derived from the Boeing 

Commercial Aircraft Airport Planning Guide [1] whenever possible.  Other 

measurements were obtained from a 1:100 scale plastic m

2-13 



 

Figure 2-5:  Key dimensions of the Boeing 747-400 used in creating the faceted 
model [1]. 

(GU ) are fictional to avoid sensitive I results.  However, the temperatures can be set by 

the GUI user to realistic values.    

2.4 Summary 

The fundamental radiometric concepts, specifically blackbody radiation and the 

relationship between emissivity and reflectance as defined by Kirchoff’s Law, presented 

in this chapter will be key in the calculation of aircraft intensity in Chapter III.  However, 

prior to any radiometric calculations, the faceted model must first be created based on the 

dimensions of the Boeing 747-400 discussed in the previous section.       
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3III   Radiometric Model 

3.1 Overview 

Although many computer-aided design programs could have been used to create 

the faceted model, MATLAB® was chosen so that knowledge gleaned from the creation 

of aircraft parts using facets could be applied to the obscuration and reflection algorithms.  

The obscuration algorithm and resultant matrix determines which facets contribute to the 

aircraft’s intensity.  The reflection matrix accounts for contributions from earth-shine, 

sky-shine, and part reflections to the aircraft’s intensity.  Surface properties for a specific 

pa  

discussed before concluding the chapter with the radiometric calculations necessary in 

®   

Before creating the radiometric model, a mathematical representation of the 

physical aircraft had to be created in MATLAB

Chapter II.  To accomplish this, an understanding of how MATLAB  handles 3-D 

ents to 

create a single vertex on a rectangular grid.  Each facet is created from four vertices, 

where vertices 1 and 2 are on one row and vertices 3 and 4 are on the row immediately 

below as depicted in Figure 3-1.  For example, the first facet is created in the following 

fashion:  First vertex 1 (x11,y11,z11)  is plotted, then vertex 2 (x12,y12,z12), followed by 

vertex 3 (x22,y22,z22), and finally vertex 4 (x21,y21,z21) is plotted in-plane with the 

int sample are then derived from reflectance measurements.  Atmospheric effects are

determining the aircraft’s intensity. 

3.2 3-D Modeling in MATLAB

® using the dimensions discussed in 

®

graphics was necessary.  The surf command, used to display 3-D images, requires three 

square coordinate matrices (x, y, and z) to render an image [13].  Each x-coordinate 

element is matched with its corresponding y-coordinate and z-coordinate elem
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three other vertices.  The resultant quadrilateral created by these four vertices becomes 

the first facet.  Figure 3-2 shows the resultant facets from the matrices shown in Figure  

3-1.  The size of the matrices (NxN) determines the number of facets that will be 

generated (N-1)2.  More facets create better detailed parts, but also increase the time 

required in the radiometric computations.  These issues will be discussed later.   

3.3 Faceted Model 

The next step is to take the knowledge of how MATLAB® creates faceted 

surfaces and use geometry to create the simple shapes which comprise the various aircraft 
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Figure 3-2:  Nine facets and the vertices that created them. 
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Figure 3-1:  The coordinate matrices used to create facets necessary for 3-D modeling.  
Matrices are square (NxN) and create (N-1)2 facets. 
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parts.  A complete aircraft parts breakdown is shown in Appendix C. 

3.3.1 Fuselage 

The fuselage is broken up into nine different parts as shown in Figure 3-3.  The 

midsection of the fuselage is made of two half-cylinders whose coordinates are defined 

b

x r

y [4]: 

cos ,
sin ,
.

y r
z z

θ
θ

=
=
=

           (Eq 3-1) 

In Equation 3-1, r is the radius of the cylinder and θ is varied from 0 to π in order to 

create half cylinders.  Varying θ from 0 to 2π would create a full cylinder.  The z-

coordinate vector is varied from 0 to the length of the cylinder.  Figure 3-4 shows the 

fuse ge cylinder usingla  the coordinate system and variables from Equation (3-1).  The 

cylinde

  

r shown in Figure 3-4 is rotated and shifted into place using Euler’s angles, which 

will be discussed later. 

Windshield
d Top

Mid Bottom

Front Bottom

Front End Cap

Front Top

Rear Bottom

Rear End Cap

Mi
Rear Top

Windshield
d Top

Mid Bottom

Front Bottom

Front End Cap

Front Top

Rear Bottom

Rear End Cap

Mi
Rear Top

Figure  Different surface 
properties can be applied to each part to better simulate a real aircraft. 

3-3:  The fuselage is created from nine different parts. 
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z-axis

The front and rear fuselage pieces are half-cones and are created much like regular 

cylinders; however, the radius is also varied.  The rear fuselage pieces also incorporate a 

small offset (the difference between the start radius and the radius vector) in order to 

the mid fuselage and to give the bottom piece its slope.   

  The front and rear end caps are just hemispheres and can be created using the 

following [4]: 

keep the top piece level with 

sin cos ,
sin sin ,
cos .

x r
y r
z r

θ φ
θ φ
θ

=
=
=

     (Eq 3-2) 

In order to create a hemisphere, the angles θ and φ are both varied from 0 to π.    

3.3.2 Wings, Vertical Stabilizer, and Horizontal Stabilizers 

The wings, vertical stabilizer, and horizontal stabilizers are created using 

trapezoids f

y oordinate vector 

or the control surfaces themselves and half cones for the leading edges.  The 

-coordinate vector varies from 0 to the height of the trapezoid.  The x-c

θ
y-axis

x-axis

r

z-axis

θ
y-axis

x-axis

z-axis

θ
y-axis

x-axis

r

Figure 3-4:  The coordinate system and variables used to 
create the fuselage cylinder.  The cylinder is later rotated 
and shifted into place using Euler’s angles. 
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varies from xstart to xend which can be calculated from the well-known equation of a line 

[20]: 

1

1

2

2

,

.

start

end

y bx
m

y bx
m

−
=

−
=

      (Eq 3-3) 

Figure 3-5 shows the variables used in Equation 3-3 and also illustrates both parts of the 

wing/stabilzers.  The slopes, m1 and m2 can be calculated using rise/run for each line.  If 

the first y-intercept (b1) is set to 0, the other (b2) becomes –m2* base length (the longer of 

the two paralle f the matrix, 

then varies from 0 to the maximum radius of the leading edge cone for the wings and the 

tal 

l lines).  The z-coordinate vector is set to 0 for the first half o

horizontal stabilizers.  This makes the bottom surface of the wing and horizontal 

stabilizers completely flat, while the top surface has a twist to it.  The vertical stabilizer’s 

z-coordinate vector varies from -1/2 the maximum radius of its leading edge to +1/2 the 

maximum radius of its leading edge to give it symmetry unlike the wings and horizon

stabilizers.     

Win

Leading Edge

gWin

Leading Edge

g

Figure 3-5:  The wings and stabilizers are created from 

base length 

b

trapezoids and half-cone leading edges. 

b2 

. . 
m2m1 

1 
x 

y height 
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3.3.3 Engines 

The engine is assembled from seven simple shapes as portrayed in Figure 3-6.  

The case top and bottom are created in the same manner as the mid fuselage top and 

bottom already discussed.  The exhaust cone has its analog in the front fuselage cone.  

The front face, interface washer, and exhaust pl

Equation (3-1).  The difference in the equation is that the radius is varied from 0 to the 

ane are all simply disks created using 

disk radius for both the front face and exhaust plane and from an inner radius to outer 

radius for the interface washer.  The angle θ is varied from 0 to 2π and the z-coordinate 

vector is not varied at all.     

3.3.4 Rotation and Translation 

All aircraft parts were created centered on the origin then rotated and moved to 

their final positions.  The rotation and translation of one point, (x1, y1, z1), to another, (x2, 

y2, z2), is given by Equation 3-4 [7]. 

Case Bottom

Front Face

Case Top Cone Interface

x one B

lane

Case to Exhaust Exhaust Cone Top

E haust C ott

Exhaust P

om

Case Bottom

Front Face

Case Top Cone Interface

x one B

lane

Case to Exhaust Exhaust Cone Top

ott

Exhaust P

omE haust C

Figure 3-6 part can be 
assigned it

:  Each engine is constructed from seven parts.  Each 
s own temperature and surface properties.  
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2 11 1 12 1 13 1

2 21 1 22 1 23 1

2 31 1 32 1 3

x

y

x 3 1

x L a x a y a z
y L a x a y a z

z L a x a y a z

= + + +
= + + +

= + + +

     (Eq 3-4) 

Where Lx, Ly, and Lz are the components of the translation and aij are elements of 

ψ χ ψ χ ψcos cos cos sin sin
cos sin sin sin cos cos cos sin sin sin sin cos
sin sin cos sin cos sin cos cos sin sin cos cos

a φ χ φ ψ χ φ χ φ ψ χ φ ψ
φ χ φ ψ χ φ χ φ ψ χ φ ψ

⎜ ⎟= + − −⎜ ⎟
⎜ ⎟− +⎝ ⎠

. (Eq 3-5) 

The angles φ, ψ, and χ are known as the Euler angles and control rotation about the origin 

as follows:  φ about the x-axis, ψ about the y-axis, and χ about the z-axis.  In general, 

(x

−⎛ ⎞

reas 

d a normal to its surface and an area to be used in the 

project

vectors are 

1,y1,z1) can be scalars, vectors, or matrices.   

3.3.5 Facet Normals and A

Each facet must be assigne

ed area analysis and other computations.  To find these, each facet is broken down 

into four vectors emanating from two opposite vertices as shown in Figure 3-7.  These 

BA , BC , DC , and DA .  Taking the cross product of BA  and BC  or DC  

and DA

right-hand r

 will result in a vector perpendicular to the facet surface, i.e., its normal [4].  The 

ule dictates which way the normal will point.  BA  × BC  will result in the 

A B

CD

A B

CD

A B

CD
Figure 3-7:  Each facet can be broken up into four vectors 
which can be used to calculate the facet normal and facet area. 
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normal pointing out of the page, while BC × BA   will result in a normal pointing into the 

page.  The cross product can be found by the following: 

( ) ( ) (y z z y z x x z x y y x )F G F G F G x F G F G y F G F G z× = − + − + − .  (Eq 3-6) 

om the 

surface of interest.  Figure 3-8 shows two equivalent parts with opposite normals.  Both 

hemispheres are exact in dimensions, but significant differences would occur in the 

projected area calculations.  Plotting the normals is the only way to know whether the 

part was generated correctly.  From Equation (3-2), θ is varied from 0 to π to create the 

hemisphere on the left in Figure 3-8 and from π to 0 for the hemisphere on the right – a 

very subtle difference that would have drastic consequences.  Figure 3-9 shows that the 

aircraft facet normals are oriented outwards as expected.  In MATLAB®, this figure can 

be rotated to view all facet normals. 

When creating parts, it is imperative that the normals are directed outward fr

A BA B

Figure 3-8:  The two hemispheres are exact in dimensions; however, the 
normals for A are directed outward, while those for B are directed 
inward.  Plotting the normals is the only way to know that these 
hem to 
inco

ispheres are different.  Not checking the normals could lead 
rrect calculations.   
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Figure 3-9:  The aircraft facet normals.  Notice the normals are pointing 
out from the aircraft facets. 

Half the magnitude of the cross product of two vectors, 1
2 F G× , yields the area of 

a triangle whose sides are , and the line connecting F , G F  and G  [20].  Therefore, 

1
2 BA BC×

3-7.  Sim

 results in the area of the triangle created by A, B, and C as shown in Figure 

ilarly, 1
2 DC DA×  yields the area of the triangle created by C, D, and A.  

Summing the areas of these two triangles results in the total area of the facet as shown in 

Figure 3-7.   Recall from Chapter II that if the area of the source and detector are much 

smaller than the distance between them squared (As,Ad<<R2), the intensity from the 

source is simply the product of the projected area (As cos θs) and radiance of the source 

(Equati ed for on (2-13)).  As a result of this section, the projected area can be comput
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each facet based on its area, As, and the angle, θs, between the observation line and the 

facet’s assigned normal7.   

3.4 Facet Area Errors 

Using flat facets to create surfaces involves some obvious errors, especially when 

creating curved surfaces such as cylinders, disks, and spheres.  To minimize errors, a 

large number of small facets should be used (i.e., high resolution).  High resolutions have 

the unfortunate side-effect of increasing computation times in the obscuration algorithm, 

reflection algorithm, and radiometric calculations.  The effects on the obscuration and 

reflection algorithms are especially significant.  Through trial and error, resolutions were 

selected for each part based on the faceted appearance of the part and the overall effect on 

computational times in the creation of the obscuration and reflection matrices.  Table 3-1 

outlines  along with the area summed from the facets that 

create the part.  The amount of error is based on the ratio of the facetized part to the 

geometric area of the part and is listed in the table.  As expected, flat surfaces such as the 

 T

(mid, front

pherical ca

only represent 0.86% of the total aircraft surface.   

The largest errors occur in the creation of disks such as the engine front, engine to 

exhaust cone interface (washer), and exhaust disk.      

                                                

 the geometric area of parts

wings, vertical stabilizer, and horizontal stabilizers have no error. he main fuselage 

, rear) has relatively little error due to the higher resolution used to create these 

parts.  The hemis ps, on the other hand, have about an 8% error in area, but 

 

7 To find the angle between the observer and normal, Obs and sn  : 1cos s
s

Obs nθ − ⎜ ⎟= ⎜ ⎟
sObs n

⎛ ⎞

⎜ ⎟
⎝ ⎠

i
 [20]. 
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  Table 3-1:  Errors in surface area as a result of representing that surface using facets. 
Aircraft Part Geometric Area (m2) Faceted Area (m2) Error # of Facets

Mid Fuselage 778.02 777.50 6.68x10-4 1250 
Front Fuselage 92.33 91.76 0.0062 162 
Rear Fuselage 272.69 270.31 0.0087 450 
Front Fuselage Cap 13.03 11.98 0.081 25 
Rear Fuselage Cap 9.82 9.03 0.080 25 
Wing 482.67 482.67 0 841 
Vertical Stabilizer 151.05 151.05 0 289 
Horizontal Stab 83.43 83.43 0 169 
Engine Case 29.69 29.20 0.017 50 
Engine Front 4.91 4.25 0.13 81 
Engine Washer 2.89 2.53 0.12 81 
Exhaust Cone 12.08 11.86 0.018 50 
Exhaust Disk 0.64 0.55 0.14 81 

 

The obvious choice is to increase the resolution to correct these errors.  Figure 3-10 is an 

error analysis tool to help determine what resolution to use in creating a disk or washer.  

This tool works for the engine front face, exhaust disk, and interface washer.  For an error 

of less than 1%, at least 676 facets (resolution of 27) must be used in the creation of the 

part. 

 Of course changing the resolution of these parts would also require the generation 

of new obscuration and reflections matrices.  An alternative is to add a correction to the 

desired

f the aircraft, the correction only 

needs to be applied to the interface washer and exhaust disk.   

First, an assumption must be made that the self emission of the part must be much 

greater than any reflection off its surface.  This certainly applies for hot parts such as the 

 temperature or to the area of the part.  Since the engine front face is cool and does 

not contribute significantly to the overall intensity o
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Figure 3-10:  The t of error as a function of the number of
s used to create a circular disk or washer.  Note that for an

error of less than 1%, at least 676 facets (resolution of 27) are 
needed. 

 amoun  
facet  

interface washer and exhaust disk.  Intensity can then be approximated as the product of 

the projected area and part radiance as previously shown in Chapter II.     

cose
e e s s

d

I L A θΦ
≅ ≅
Ω

.      (Eq 3-7) 

Since the faceted area is less than the real area, then an increase in the facet’s area by 

e.  The facet error is then 

adde

the same fraction will correct the intensity.  Scaling the area is preferred since it only 

requires a small change in the code.  However for the current code, an increase in the 

radiance by the same fraction as the area error must be used.  Note that radiance is a 

function of both the temperature and wavelength and in order to find a correction factor, 

the radiance must first be solved for at a specific temperatur

d to the radiance and the corrected temperature is back-solved from the corrected 

radiance.  The ratio of the corrected temperature to the original temperature yields a 
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corrective scaling factor.  The process just described was repeated for a range of 

temperatures (200-1000 K) and range of errors (1%-15%) to develop Figure 3-11.  Using 

MATLAB® curve fitting yields 

,     (Eq 3-8) 

,       (Eq 3-9)  

where x is the percent error.      

For example:  the desired temperature for the exhaust disk is 700 K, the exhaust disk has 

a 14% error in area, and the band of interest is LWIR.  Using Equation (3-13), a scale 

factor of 1.06 is calculated.  Therefore, the corrective temperature to enter into the 

radiometric m

 

5 2 3
LWIRscale factor  = 8.0075 10 3.0487 10 1.0024x x− −× + × +

4 2 5
MWIRscale factor  = 2.7963 10 5.199 10 1.0125x x− −× + × +

odel is 742 K. 

Figure 3-11:  Temperature correction plots to compensate for error in 
facet area.  Self emission from the part must be much greater than any 
reflections off that part.   
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3.5 Obscuration Matrix 

3.5.1 The Obscuration Algorithm 

The only facets that contribute to the overall intensity of the aircraft are those that 

are visible to the observer.  Those facets whose normals are greater than 90

observer are obviously not in view and are easy to account for; however,

whose normals are not greater than 90º from the observer, but are still obstructed by 

e process to be done during a simulation.  Therefore, 

obscuration matrices were developed for several aircraft pitch angles.  These matrices are 

accessed during radiometric calculations allowing the simulation to run in a much shorter 

time.  Each matrix determines which facets are in view and which are obstructed for      

0-360º in azimuth.  Each matrix takes about three hours to construct using MATLAB® 7 

and about six hours using MATLAB® 6.  Once constructed, the matrices do not need to 

be reconstructed unless resolutions are changed or new parts are added. 

 Figure 3-12 illustrates how the algorithm determines whether or not one facet 

obscures another.  The distance projected from the center of facet B onto the observation 

line, , is given by Equation (3-10) [20]. 

º from the 

 there are facets 

another facet and thus do not contribute to the overall intensity.  These obstructed facets 

are not as easy to account for.  Each facet needs to be checked with every other facet in 

order to determine if it obstructs other facets or is obstructed by other facets.  This is a 

very computationally intensiv

Obs

distance sin
AB Obs

AB
Obs

θ
×

= =     (Eq 3-10) 
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 This distance is then compared to the projected diagonal8 of facet A.  If the distance is 

less than half the projected diagonal, then the first facet obscures the second.  Otherwise, 

there is no obscuration.  For efficiency, obscuration is checked both ways for each look 

angle.  First, obscuration of facet B by facet A is checked; then obscuration of facet A by 

facet B is checked.  The direction of AB allows the algorithm to determine which facet is 

in front (closer to the observer).   

Figure 3-13 shows the obscuration matrix at work.  In the top figure, the observer is 

ver. urrounding facets and look like “shadows”.  

The two engines cast a shadow on the fuselage, while the two opposite engines are 

entirely in the shadow of the fuselage. 
                                                

directly viewing the broadside of the aircraft.  In the bottom figure, the whole scene, 

including the observer, is slightly rotated to show the facets that are not in view by the 

obser   These facets are darker than the s

 

8 The length of the diagonal is multiplied by the cosine of the angle between the facet normal and the 
observation line.  As the angle approaches 90º, the facet becomes less visible and the cosine of the angle 
approaches zero. 

Figure 3-12:  The obscuration of facet B by facet A is determined by the projected 

compared to the projected diagonal of facet A.  If the distance is less than the 
distance from facet B’s center onto the observation line.  This distance is 

projected diagonal, then facet A obscures facet B as in the figure above. 

Facet A

O

Facet B

bs

AB

A

θ

AB sin θ

diagonal

Facet A

O

Facet B

bs
Obs

ABAB

A

θ

AB sin θ

diagonal

AB sin θ
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Obstructed Facets

B

A

Obstructed FacetsObstructed Facets

B

A

Figure 3-13:  The obscuration matrix at work.  The observer is viewing the broadside 
in  
th
m

 A.  In B, the observer is still viewing the broadside, but the whole scene, including
e observer, have been slightly rotated to show the “shadow” cast by the obscuration 
atrix.  The “shadowed” facets cannot be seen by the observer as is evidenced in A. 

3.5.2 Obscuration Errors 

than half the projected diagonal of the first facet.  The 

algori

rker) facet even though it is not being obscured.   

Figure 3-13 is a good example of when the obscuration matrix is working well.  

However, there are instances when facets are incorrectly obscured or not obscured when 

they should be.  Figure 3-14 illustrates both of these examples.  The graphic on the left 

illustrates a situation when a facet should be obstructed by the algorithm, but is not.  The 

observer is looking into the page and so the distance from the center of the second facet 

to the observation line is greater 

thm would incorrectly conclude that the second facet is not obscured by the first, 

even though it is obviously obstructed.  The graphic on the right is an example of the 

algorithm obscuring a facet when it should not be.  Again, the observer is looking into the 

page, but in this case the distance from the second facet center to the observation line is 

less than half of the projected diagonal length due to a large first facet diagonal.  The 

algorithm would obscure the second (da
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The ideal scenario is to have equally-sized and many (high resolution) facets on all 

the aircraft parts.  For this model, the resolution on each part was adjusted to get similar 

facet densities.  However, due to geometric differences in parts (singly curved, doubly 

curved, flat, etc.) the facet shapes are not necessarily the same.  Most of the facets are 

quadrilateral but not necessarily the same shape (square, rectangular, trapezoidal, etc.).  

There are a few facets primarily on the hemispheres that are triangular.  The location of 

these triangular facets at the front and rear of the aircraft keep them from obscuring or 

being obscured and thus do not present a problem.  

To determine whether these obscuration errors are significant, the obscuration 

matrix was tested for an aircraft elevation angle of -20º.  All the surface temperatures 

were set to 295 K and emissivity for every facet was set to one.  With no reflection 

contributions and no temperature contrast between parts, the effects of the obscuration 

matrix can be examined as shown in Figure 3-15 and already seen in Figure 3-13.  In 

Figure 3-15, the aircraft on the left is at an azimuth angle of 45º and represents the 

B

A

B

A

Figure 3-14:  Instances where the obscuration matrix fails.  In A, the light colored 
facet should obscure the smaller one in the upper right hand corner.  However, due 
to the projected diagonal length, the algorithm may not obscure the smaller facet.  
In B, due to the size of the diagonal of the lighter facet, the algorithm will obscure 
the darker facet even though it is obviously not obscure. 
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aircraft as viewed by the observer.  As shown in this image, there are several facets on 

the fuselage under the wing and horizontal stabilizer that are obscured, but should not be.  

In the same image, only the outer surface of the front engine cavity is modeled, 

explaining why the inner surface ‘looks’ obscured – these can be ignored.  The figure on 

the right is rotated to see the facets not viewable to the observer.  There are several facets 

on the left wing, including a whole row of them, which should be obscured by the 

fuselage but are not.  There are also four facets on the right horizontal stabilizer that are 

obscured but should not be.   

To view what effect these obscuration errors have, the major aircraft component 

intensities are plotted in Figure 3-16 using the same aircraft temperatures and surface 

properties discussed above.  The obscuration matrix works well at nose-on, tail-on, and 

broadside views as demonstrated in Figure 3-13 for the broadside view.  These aircraft 

aspect angles (0º, 360º, 90º, 270º) serve as minimal error points.  As can be seen from 

Figure 3-15:  Obscuration errors on an aircraft at -20º elevation and 45º azimuth (not 
rotated).  
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Figure 3-16:  The major aircraft component intensities when configured for 
obscuration matrix effects at -20º elevation.  The obscuration errors contribute to the 
jaggedness seen in some of the signatures, but do not affect the trend of the signatures.

Figure 3-16, all aircraft part intensities transition from and to these low error points with 

little deviation.  The only exception is the intensity due to the engines, which has notches 

between 46º and 105º and again between 255º and 315º.  These notches occur when two 

of the engines become completely obscured by the fuselage and are actually examples of 

the obscuration matrix working well.   

While hard to quantify, the errors due to obscuration create some ‘jaggedness’ to 

the aircraft component signatures, but do not adversely affect the trend of these 

signatures.  Since the goal is to develop a trend analysis tool, the obscuration errors do 

not have a significant effect.   
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3.6 Reflection Matrix 

3.6.1 Reflection Algorithm 

The radiometric model also features a single bounce reflection9 matrix to account 

for single reflections of hot parts, as well as earth shine and sky shine.  The algorithm 

starts by tracing a single ray from the observer to a facet in view.  Using Snell’s law, this 

ray reflects off the facet at the same angle10 as the incident angle, labeled θi in Figure     

3-17.  The ray is then followed to see whether it strikes another facet, earth, or sky. 

The same procedure used in the obscuration matrix is implemented to check whether the 

ray intersects another facet.  In Equation (3-10), the observer line, Obs , is replaced with 

the reflected ray, but all else remains the same.  If the distance from the center of the 

s

                                              

econd facet to the reflected ray is less than half the projected diagonal of the first facet, 

Figure 3-17:  The reflection algorithm traces a single ray reflected off a 
facet according to Snell’s Law and then checks whether the reflected 
ray strikes another facet, the earth (lower hemisphere), or the sky 
(upper hemisphere).  The radiance from another facet, earth, or sky is 
then reflected off the first facet.    

   

 algorithm assumes a fairly specular surface (Section 3.7 will show this to be a good approximation).  9 The
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then the ray is said to strike the second facet.  Of course, the second facet must be in view 

e of θ2, shown in Figure 3-17 must be less than 90º. 

 some 

heated leading edge and the reflection.  

of the first and so the magnitud

Figure 3-18 is an example of the reflection matrix at work.  All aircraft parts are 

set to the same temperature (295 K) except for the leading edge of the vertical stabilizer.  

This part is set to a higher temperature (500 K).  The emissivities of the parts are all set to 

0.2, making the reflectances 0.8.  Also, the parts are assumed to be purely specular (more 

will be discussed in Section 3.7).  This configuration allows the reflection to have

contrast.  The reflection of the hot leading edge on the fuselage can be distinctively seen 

in Figure 3-18.  Since the emissivity of the heated surface is only 0.2 and the reflectance 

of the fuselage is 0.8, only a portion of the radiance from the heated surface reflects off 

the fuselage.  This accounts for the difference in color (and thus radiance) between the 

Reflection

Heated 
Surface

Reflection

Heated 
Surface

Figure 3-18:  The reflection matrix at work.  All aircraft parts are set to the same 
temperature except for the vertical stabilizer leading edge.  The reflection of this 
heated part can be seen on the top portion of the fuselage.   

                                                                                                                                                 

10 The angle is measured with respect to the facet normal. 
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If the reflected ray does not strike another facet, then it must strike either the earth 

or the sky.  The resulting reflections are seen as either earth shine or sky shine.  Both the 

earth and sky are assumed to have emissivities of 1.0.  The amount of earth or sky shine 

seen is highly dependent on the true pitch and observed pitch of the aircraft.  The true 

pitch of the aircraft is the angle made between the aircraft waterline and the horizon.  

Observed pitch is the apparent pitch seen by the observer.  In Figure 3-19, both aircraft 

have an observed pitch of 0º, but the true pitches are different.  The aircraft in A has a 

true pitch of 0º and as a result, the amount of earth and sky shine is roughly equal.  The 

aircraft in B has a true pitch of 30º.  Given an observed pitch of 0º, this implies that the 

observer is located at a higher altitude than the aircraft and thus a greater amount of sky 

shine is observed.  The assumption is that an observer higher in altitude than the aircraft 

Sky Shine 

Earth Shine

Sky Shine 

Earth Shine

A

B

Observed = 0
True = 0

Obs

Obs
Observed =0

True

Sky Shine 

Earth Shine

Sky Shine 

Earth Shine

A

B

Observed = 0
True = 0

Obs

Obs
Observed =0

True

Figure 3-19:  The reflection matrix showing earth and sky shine off the aircraft.  Pitch 
a
A
B  is still 0º.  This implies 
that the observer is above the aircraft.  As a result, sky shine is prevalent on the 
aircraft.   

ngle (observed versus true) makes a difference in the amount of earth or sky shine.  in 
, the true pitch of the aircraft is 0º and the observed pitch of the aircraft is also 0º.  in 
, the true pitch of the aircraft is 30º, but the observed pitch

3-22 



 

will ha

facet 3 and thus incorrectly reflects facet 3 off of facet 1.  Although every reflection from 

every part at each elevation and azimuth angle has not been inspected, the errors 

described above appear on occasion when the observed pitch of the aircraft is greater than 

+15º.  At these higher pitch angles, hot engine parts may reflect off the main fuselage 

even though the wing is obscuring the engines from the part of the fuselage the 

ve the sky behind him, while one lower in altitude than the aircraft will have the 

earth behind him.  This may not always be the case.  For example, an observer on a 

mountain looking down on an aircraft in a valley will have the mountain, not the sky, 

behind him.  If the observer is only slightly lower in altitude than the aircraft, the 

observer may have the sky behind him rather than the earth.  

3.6.2  Reflection Errors 

         There are instances where the reflection algorithm may fail.  Figure 3-20 

illustrates such a case.  The algorithm first checks if facet 2 reflects off facet 1.  Since the 

normal of facet 2 is greater than 90º with respect to the reflected ray, facet 2 is not 

reflected off facet 1.  The next step for the algorithm is to check if facet 3 reflects off 

facet 1.  The algorithm does not account for the fact that facet 2 happens to be obstructing 

Facet 1

Facet 3

Facet 2

Facet 1

Facet 3

Facet 2

Figure 3-20:  An example of when the reflection algorithm fails.  The 
algorithm does not check for obstruction by another facet and would 
therefore incorrectly reflect facet 3 off of facet 1.  
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reflections are on.  Inspecting the reflections off the faceted model, as in Figure 3-18, one 

can determine whether or not a reflection is valid.  Section 4.9 will describe a procedure 

to check reflections.        

3.7 Surface Properties 

The radiometric model can use simple surface properties or a surface property 

red data.  For simple surfaces, emissivity and reflectance are 

assume

AFRL Optical Measurement Facility (OMF) confirmed that aircraft paints are generally 

specular at LWIR, but not necessarily so at MWIR [5].  At MWIR, aircraft paints still 

matrix created from measu

d to be angle and wavelength independent.  However, real surfaces are rarely 

independent of angle and wavelength. 

3.7.1 Paint Selection 

Originally, the computational model was to be validated against the plastic, 1:100 

scale, HobbyCraft model mentioned in Section 2.3 and depicted in Figure 3-21.  The 

plastic model is not plumbed and therefore cannot be heated.  In order to maintain its 

temperature, the plastic model fuselage was stuffed with insulating foam.  It was 

originally painted with Krylon® 1602 ultra flat black paint for its high emissivity.  

However, flat black paint is not very specular and would thus invalidate the assumption 

of specularity used for the reflection algorithm.  Discussions with personnel from the 

Figure 3 ft of 
Canada. loss black topcoat. 

-21:  The plastic, 1:100 scale model manufactured by HobbyCra
  It is painted with an ultra flat black primer and a g
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have a large specular contribution, but may have a significant diffuse component.  This 

diffuse component is addressed in the radiometric calculations allowing for the 

assumption that the paint is still fairly specular.  Airliners that do not paint their aircraft, 

a hed aluminum look, are very specular at both IR bands.  In 

order t

.  Figure 3-21 shows the painted plastic model.           

iffuse Reflectance (HDR) Measurements 

reflectance versus incident angle graph as shown in Figure 3-23.  An additional data point 

corresponding to a reflectance of 1.0 at 90º is added since at grazing, a reflection of 1.0 

would be expected.  The plotted data points are then used to find the reflectance as a 

function of incident angle for each band.   

but r ther opt for the polis

o keep the specular assumption at both bands, the OMF suggested using gloss 

black paint.  This paint is specular at both IR bands with high emissivity and a low 

diffuse reflectance.  Therefore, the plastic model was painted with Krylon® 1601, glossy 

black, over the previous flat black paint

3.7.2 Hemispherical D

A plastic sample with the flat black undercoat and glossy black top coat was 

provided to the OMF for a hemispherical diffuse reflectance (HDR) measurement.  The 

HDR measurement provides the reflectance (total, diffuse, and specular components) as a 

function of wavelength for various incident angles.  Figure 3-22 shows the specular 

component reflectance for both the MWIR and LWIR bands at 10º, 20º, 30º, 40º, 50º, 60º, 

70º, 75º, and 80º angles of incidence.  Note that the reflectance of the sample increases 

with increasing angle of incidence.  The reflectances at each angle of incidence for both 

bands are fairly constant with respect to wavelength, which allows for a simplification.  

The reflectance is averaged for each incident angle and plotted as a single point on a 
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Figure 3-22:  Hemispherical diffuse reflection (HDR) measurement taken by 
AFRL’s Optical Measurements Facility of a plastic sample with a Krylon® 1602, 
ultra 
variance in reflectance over each infrared band, but significant difference in 

flat black, undercoat and a Krylon® 1601, glossy black, topcoat.  There is little 

reflectance over different incident angles.     

Figure 3-23:  Since there is little variance in reflectance over each infrared band, an 
 incident angle.  The data is plotted and an 

equation is derived using the MATLAB  data fit tool.  The resultant equation provides 
reflectance as a function of incident angle. 

average reflectance is computed for each
®
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The MATLAB® data fit tool was used to find Equations (3-11) and (3-12) for MWIR and 

LWIR reflectances, respectively. 

( ) -9 5 -7 4 -5 3

-4 2 -3 -3

=1.638 10  - 2.756 10  + 1.7974 10  

                 - 5.324 10  + 6.918 10  - 2.720 10
MWIRρ θ θ θ θ

θ θ

× × ×

× × ×
  (Eq 3-11) 

( ) -7 4 -5 3 -4 2

-2

=1.040 10  - 1.415 10  + 6.848 10

                - 1.305 10  + 0.1206
LWIRρ θ θ θ θ

θ

× × ×

×
             (Eq 3-12) 

The angle, θ, is the incident angle and, by Snell’s Law [8], the reflected angle, as well.  

Figure 3-24 illustrates the use of Equation (3-11) as the reflectance function for the 

faceted model.  As expected (recall Figure 3-23), the reflectance at angles closer to 

g ct 

a r 

illustra e purposes, both earth and sky temperatures were set the same to show the 

effects of the reflectance function at MWIR.     

 

razing (90º) is much higher than the reflectance at lesser incident angles.  At the aspe

ngle shown, earth and sky shine are the main contributors to the reflected energy.  Fo

tiv

Figure 3-24:  Zoomed in image of faceted aircraft nose.  The angular dependence 
of the glossy black paint is shown.  At angles near grazing (90º), reflectance is 
high, while at lesser angles reflectance is low.  Note: earth and sky shine are the 
main contributors in this figure and are set to the same temperature at MWIR. 
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Using Kirchoff’s Law, the angle-dependent emissivity can be determined by subtracting 

Equations (3-11) and (3-12) from 1.   

/ /( ) 1 ( )M LWIR M LWIRε θ ρ θ= − .    (Eq 

Equations (3-11) through (3-13) are used later in the radiometric calculations.         

Using the HDR data for the diffuse component reflectance, averaging the 

reflectance for each incident angle as was done for the specular component, and then 

using the MATLAB  curve fit tool yields the diffuse reflectance as function of incident 

angle as depicted in Figure 3-25.  Since the diffuse component reflectance is so low for 

both bands, averaged reflectances of 0.0127 for MWIR and 0.0377 for LWIR are used 

later in the radiometric calculations. 

3.7.3 Bi-Directional Reflectance Distribution Function (BRDF) Measurements 

The HDR data proved useful in determining the angle-dependent reflectance of the 

paint scheme used on the plastic model aircraft, but led to questions about the specularity 

3-13) 

®

Fig  
the 

ure 3-25:  The diffuse component reflectance as a function of incident angle.  Since
reflectance is so low for both bands, an average reflectance is used for each.   
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of the paint sample.  To answer this question, the OMF also took a bi-directional 

ent angle of 20º.  The results are shown in Figure   

3-26.  Within 5º of the reflection angle, the BRDF drops 

 taken 

at 3.3

    

reflection distribution function (BRDF) measurement of the sample.  The measurement 

was conducted at 3.39 µm at an incid

three orders of magnitude, 

indicating that the paint sample is fairly specular.  Although this measurement was

9 µm, the sample is expected to be even more specular at longer wavelengths [15].  

The irregularities that affect the specular nature of the surface become less significant at 

longer wavelengths.  As the angle of incidence increases, the sample becomes even more 

specular as demonstrated in Figure 3-27 where the sample was measured at 3.39 µm, but 

at different angles of incidence.  As the angle increases, each BRDF peak narrows 

implying an increase in specularity.   

Figure 3-26:  The bi-directional reflectance distribution function (BRDF) 

e 
measurement was taken at 3.39 µm and at 20º incident angle.   

measurement of the plastic model aircraft paint sample.  The BRDF drops 
three orders of magnitude within 5º of the reflection angle.  Th
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3.8 Atmospherics 

The radiometric model has the capability of computing the aircraft intensity in the 

absence of an atmosphere (source intensity) or including the effects of the atmosphere 

(apparent intensity).  The atmosphere primarily has two effects on the observed intensity: 

1.)  It creates a spectral transmission based on atmospheric conditions. 

2.)  It has a spectral radiance for the path between the observer and aircraft which 

contributes to the reflected intensity of the aircraft. 

To obtain the contributions from these two atmospheric effects, a simulation was 

conducted utilizing the Philips Lab Expert-assisted User Software (PLEXUS) (Release 3, 

Version 2), an atmospheric modeling program that incorporates Moderate Transmission 

Model (MODTRAN), Fast Atmospheric Signature Code (FASCODE), High Resolution 

Model (HITRAN), SHARC (Strategic High Altitude Atmospheric Radiance Code) and 

Figure 3-27:  BRDF measurements at varying incident angle.  As the angle of 

of the sam
incidence increases, the peaks narrow signifying an increase the specular nature 

ple. 
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MODTRAN Merged (SAMM1) and/or SHARC/SAMM Atmospheric Generator (SAG) 

to generate an atmospheric spectral transmission window and radiance.   

Figure 3-28 shows the MWIR spectral transmission window generated by PLEXUS 

for a path length of 6000 feet with the target 20º above the horizon.  The simulated 

location is Albuquerque, NM at 5355 feet AGL.  The simulated time is 9 Dec 04 at 1600 

hours in the afternoon.  Furthermore, simulated weather conditions are extremely clear 

and calm with high visibility (50 km), and using a desert aerosol environment with no 

additional influence from combustion products and industrial agents.  Figure 3-29 depicts 

the MWIR spectral radiance for the atmosphere given the conditions just listed.       

 Spectral transmission windows and radiances are generated by PLEXUS and 

saved to data files later accessed by the radiometric model.  This methodology allows a 

large number of atmospheric scenarios to be used by the radiometric model without the 

need for an interface with MODTRAN.                    

Figure 3-28:  An example spectral atmospheric transmission window created by
PLEXUS. 
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3.9 Radiometric Calculations 

s

individually, this is a valid assum  

m2.  A

sourc ). 

s

The basic assumption in the radiometric computations is that the area of the 

source is much smaller than the square of the range from the source to the observer 

(A <<R2).  Since the radiance and intensity are being calculated for each facet 

ption especially since the largest facet area is only 1.15

 range of only 3.5 m when squared is already greater than ten times the area of the 

e.  This assumption allows the use of Equation (2-13

cose e sI L A θ≅ ,             (Eq 2-13) 

As previously discussed, the emissivity of the simple surface is independent of 

wavelength and angle, while the emissivity for the measured paint sample was angle 

dependent and wavelength independent.  On the other hand, radiance, normalized system 

Figure 3-29:  An example MWIR spectral radiance of the atmosphere as 
computed by PLEXUS.   

3-32 



 

input response, atmospheric transmission, and atmospheric radiance are all spectral.  

Equation (2-13) is expanded as follows: 

( ) ( ) ( ) ( )2

,

cos ( ) ,

facet selfL

1
,facet self facet facet facet atm facet atmI A H L T L d

λ

λ
θ ε θ λ τ λ λ λ λ⎡ ⎤= +⎣ ⎦∫ .  (Eq 3-14) 

Equation (3-14) finds the intensity of a facet due to self-emission.  The angle θfacet, is the 

angle between the facet’s normal and the observation line.  The angle is also the angle of 

incidence for that facet.  The term, ε(θfacet), is the emissivity as a function of incident 

angle for the paint sample.  For the simple surface, emissivity is not a function of the 

incident angle.   

H(λ) is the normalized system input response which describes the spectral 

response of a detection system.  A generic normalized system input response is shown in 

Figure 3-30 alongside the system input response of a MWIR camera using a cold-filtered 

indium antimonide (InSb) detector.  Noting the similarities between the two, the generic 

response would be appropriate for an InSb detector; however, replacing the generic 

Figure 3-30:  A:  A generic normalized system input response used by the 
radiometric model.  B:  The normalized system response of a MWIR camera with 
co  
the Air Force Research Laboratory, Wright Patterson AFB, Ohio [15]. 

A BAA BB

ld-filtered indium antimonide detector as measured by the Sensors Directorate at
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responses with actual responses would be preferred.  Generic responses were used due to 

lack of access to real data.  The radiometric model can access a database of different 

system input responses, generic or real.   

Atmospheric transmission [τatm(λ)] and radiance [Latm(λ)] have already been 

discussed and are depicted in Figures 3-28 and 3-29, respectively.  The radiance of the 

facet is determined by Planck’s Radiation Law as described in Chapter II.  Equation     

(2-16) is used to find the self-emitted spectral radiance of a facet at a given temperature 

(T) and is depicted in Figure 3-31 for a temperature of 700 K at MWIR.     

( ) ( )
2

5 /

2,
1facet hc kT

L T
e λ

λ
λ

=
hc

−
.        (Eq 2-16) 

 radiance, τatm(λ), has units of 2 cm  m
watts

sr µ
Note that the spectral atmospheric , while the 

Figure 3-31:  The spectral source radiance of a facet at a 
temperature of 700 K at MWIR. 
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facet spectral radiance, L (λ,T), has units offacet 2 m  m
watts .  Therefore in Equation (3-14), 

sr µ

Latm(λ) must be multiplied by a conversion factor of 10,000 to agree with the facet 

spectral radiance units.  Units of m-2 are preferred since the area of the facet, Afacet, has 

2

tensity.  The determination of which is the 

contributor is wholly based on the o

facet2, earth, or sky 2 (facet2,self), earth, or sky              cos

               cos
specular

facet facet spec facet facet

I

facet facet diff face

A L

A

θ ρ θ ε θ

θ ρ θ

+

+ ( ) earth or sky

diffuse

t

I

L

  (Eq 3-15) 

The radiance term in the Ispecular calculation is either the facet self emission as computed 

in the integral of Equation (3-14), the emission from the earth, or the emission from the 

sky.  Consequently, the emissivity term is that for the reflected facet (facet 2), the earth or 

the sky (the earth and sky emissivities are both 1.0).  Once again, the emissivity for the 

reflec

surfa  

units of m .  

 The total intensity of a single facet is the sum of the self-emitted intensity, the 

specular reflected intensity of another facet, earth, or sky, and the diffuse reflected 

intensity of the earth or sky.  The latter is a simplification that assumes only the sky or 

earth contributes to the diffuse reflected in

rientation of the facet, much like the earth and sky 

shine segment of the reflection algorithm.  In reality, a 2π steradian hemisphere of rays 

would contribute to the diffuse reflected intensity.  The rays could originate from other 

facets, the earth, the sky, or any combination of the three.  The total intensity is therefore, 

, ,facet total facet selfI I=

( ) ( )

ted facet is dependent on incident angle for the paint sample, but not for the simple 

ce case.  The specular reflectance (ρspec) for the facet is computed using Equations
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(3-11) or (3-12), depending on IR band, for the paint sample.  For the simple surface, the 

specular reflectance is set to a user-defined value.  An averaged diffuse reflectance (ρdiff) 

for the paint sample of 0.0127 for MWIR and 0.0377 for LWIR was used as previously 

discuss

rs, which then 

permitted use of vector operations and vector math to find facet normals, areas, and 

angles of incidence.  Using those basic concepts, an obscuration alg rithm 

create a matrix of facets visible to the observer.  Similarly, a reflection matrix was 

y.  In order

for self emission and reflection, the surface properties for each facet must also be known.  

The model can either utilize a simple surface approach where emissivity and reflectance 

are not functions of incident angle or a more realistic approach based on material 

measurements.  A particular paint sample was chosen for the plastic model aircraft with 

validation of the radiometric model in mind.  The reflectance and specularity of the paint 

sample was measured and incorporated into the radiometric model.  An atmospheric 

modeling interface was used to create atmospheric scenarios used in determining the 

apparent intensity of the aircraft.  Finally, all segments of the radiometric model are taken 

into account during the radiometric calculations to find the aircraft’s intensity at a given 

elevation angle and for 360º in azimuth.  However, the radiometric model is still not the 

ed in Section 3.7.  For the simple surface, ρdiff is simply 1-ρspec.   

3.10 Summary 

Chapter III developed the radiometric model from the ground up.  The faceted 

model is created using MATLAB® techniques and geometric equations.  Understanding 

how facets were created allowed representation of those facets using vecto

o was used to 

created to include the effects of reflections from parts, earth, or sk  to account 
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easy-to-use desktop tool scribed in the thes .  The graphical user interface de is objective

(GUI) described in the next section was developed to fulfill the thesis objective.
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4IV   Graphical User Interface (GUI) 

4.1 Overview 

 A graphical user interface (GUI) was designed in order to examine the effects on 

aircraft intensity as a result of changing variables in the radiometric model.  The GUI can 

mponent intensities as well as their contributions to the overall intensity 

of the 

with a constant temperature throughout.   

display aircraft co

aircraft.  A faceted model viewer allows the user to examine the radiance of the 

aircraft and its parts at a given aspect angle.  This GUI is essentially the desktop tool 

envisioned for this thesis.   

4.2 Main GUI Window 

MATLAB® provides a palette for creating GUI’s using the guide command.  Text 

boxes, check boxes, push buttons, and drop-down lists are a few of the items that can be 

added to the GUI palette.  When saved, the palette automatically creates call-back 

functions for each of the GUI items.  These call-back functions can then be modified to 

perform specific tasks.  The GUI, titled “Large Commercial Aircraft IR (LCAIR)”, is 

shown in Figure 4-1 (a larger image is located in Appendix D).   

4.3 Temperature Selection 

This section of the GUI allows the user to control the temperature for all aircraft 

parts.  In many cases, each part has a top and bottom surface that can be set to different or 

equal temperatures.  There is also a push button that allows the aircraft fuselage, wings, 

stabilizers, and windshield to be set to the same temperature.  Engine parts, however, 

must be set individually.  Finally, the earth and sky temperatures can also be set in this 

section.  An assumption is made that both the earth and sky are Lambertian hemispheres 
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4.4 Detector Parameters 

The next section of the GUI allows the user to set the IR band the detector is 

operating in, as well as a normalized input response.  Only two bands can be selected:  

MWIR from 3-5 µm and LWIR from 8-12 µm.  There are currently four choices for the 

normalized input response, but many more can be added.  The four choices are generic in 

nature and meant for demonstration only.  Selecting the View Data button generates a 

graph of the response selected.  Figure 3-30A is an example of one of the normalized 

input responses available through the GUI.  All available generic normalized input 

Figure 4-1:  The large commercial aircraft IR (LCAIR) GUI.  This GUI allows a 
user to change variables to the radiometric model and examine resultant aircraft 
and/or component intensities and contributions.  The geometric model can also be 
viewed with facets colored according to their radiance. 
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responses are shown in  responses for various 

c ms can be added in the future. 

4.5 A

ospheric scenarios that can be accessed by the model, but 

 e atmospheric scenarios were created using PLEXUS and 

intentio

and 3-29.    

f -20º, -15º, -10º, -5º, 0º, 5º, 10º, 15º, or 20º 

 Appendix B.  Realistic system input

dete tors or syste

tmospheric Inputs 

This section allows the user to incorporate atmospheric effects (or lack of) as 

described in Chapter III.  If the Atmosphere On check box is not selected, the radiometric 

model computes the source intensity for the aircraft and its components.  Selecting the 

box introduces the effects of atmospheric transmission and atmospheric radiance.  

Presently, there are five atm

more can be added.  Thes

nally do not represent actual operational conditions to avoid presenting any 

sensitive information.  Each scenario sets the target at a range of 6000 feet and 20º above 

the horizon.  Location, timing, and weather conditions are varied in each scenario to 

demonstrate their effects.  All atmospheric scenarios are listed in Appendix A.  Selecting 

the View Data button will produce graphs of the atmospheric transmission window and 

atmospheric radiance for the selected scenario as in Figures 3-28 

4.6 Aircraft Angles 

There are two aircraft angles that the user can control:  the observed pitch angle 

and the true pitch angle.  The observed pitch is the apparent pitch of the aircraft as seen 

by the observer.  It can also be thought of as the angle between the aircraft waterline and 

the observation line.  The obscuration and reflection algorithms are highly dependent on 

the observation pitch angle.  Since the algorithms are computationally intensive, 

obscuration and reflection matrices were created for several observed pitch angles.  The 

user can select an observed pitch angle o
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using the drag down menu.  The true pitch angle of the aircraft is the angle between the 

aircraft waterline and the horizon.  This is generally just called the pitch of the aircraft.  

The obscuration and reflection algorithms are not dependent on the true pitch of the 

aircraft.  Therefore, any angle between -90º and +90º can be entered by the user.  The 

true angle has an effect on the amount of earth and sky shine reflected off the aircraft as 

previously discussed and illustrated in Figure 3-19.  Figure 4-2 demonstrates the 

difference between observed pitch and true pitch.                   

4.7 Surface Properties 

There are two surface property selections available to the user.  The first is termed 

a simple surface.  This simple surface is further broken down into top, bottom, and engine 

(washer interface, exhaust cone, and exhaust disk) surfaces.  The concept is that some 

com  

Em e 

su flectance value to produce ρspec 

mercial aircraft have paint schemes where the top and bottom are different colors. 

issivity and reflectance are independent of angle and can be set for each of the thre

rfaces.  The percentage of specularity scales the input re

Figure 4-2:  The observed pitch angle is the angle between the aircraft waterline 

between the aircraft waterline and the horizon.  In A, the observed pitch is zero, 
but the true pitch is a positive angle ~30º.  In B, both angles are zero.   

and the observation line.  On the other hand, the true pitch angle is the angle 

Observer

Observer

True

Observed = 0

Observed = 0
B

A

True = 0
Observer

Observer

True

Observed = 0

Observed = 0
B

A

True = 0
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used in Equation (3-15).   

The user can also choose to use paint data obtained through hemispherical diffuse 

c ents.  Angular dependent functions for the emissivity and 

reflecta

e primarily 

ti cted areas.  The fuselage presents the largest area when viewed 

from br

refle tance (HDR) measurem

nce are derived from the data as described in Section 3.7.  The only paint data 

currently available is for the Krylon, 1601, glossy black.            

4.8 Component Intensities and Contributions 

This section generates the main outputs of the radiometric model based on 

variables set in the other sections.  The intensity and contribution of components can be 

examined grouped together as a major aircraft component or individually.  Additionally, 

the overall intensity of a component can be further broken down to self-emission and 

reflected intensities.   

  Using the conditions set in Figure 4-1 (LWIR, atmosphere on, 0º observed pitch, 

etc.) then selecting View Intensity under the Major Aircraft Components section produces 

the overall intensity chart shown in Figure 4-3.  The intensities for the fuselage, wings, 

vertical stabilizer, and horizontal stabilizers as shown in Figure 4-3 ar

func ons of their proje

oadside (90º and 270º) – the same holds true for the vertical stabilizer.  The wing 

and horizontal stabilizer intensities have the same form since the horizontal stabilizers are 

essentially small wings and are positioned in the same way.  The wing and horizontal 

stabilizer intensities seen from the front of the aircraft are a result of their respective 

leading edges.  When viewed from the rear (180º), the top portion of the wings and 

horizontal stabilizers contribute to the intensity.  Finally, since the rear part of the engines 

is the hottest, it is logical that the engine intensity increases as the azimuth approaches 
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Figure 4-3:  Apparent intensity as a function of azimuth angle 

LWIR, 8-12 µm, with an aircraft observed/true pitch of 0º.  
for major aircraft components.  The simulation is conducted at 

Other conditions are set as in Figure 4-1.  

180º.  The notch seen at 125º is caused by the outer engine obscuring the inner engine.  

Numerical maximums and minimums for part intensities are also printed to the 

MATLAB® command window.  

Although the intensity of the engines is less than the intensity of the fuselage, the 

radiance of the engines is not necessarily less than the radiance of the fuselage.  Recall 

that Equation (2-13) shows that is the product of the radiance and the projected 

area of the source.  Consequently, a large area like the cool fuselage can result in a higher 

intensity than a smaller area such as the hot engines.  Figure 4-4 (generated by the faceted 

model viewer which will be d later) presents the model with facets colored 

according to their radiance.  A higher radiance results in a lighter color as depicted in the 

color e 

 intensity 

 discusse

 bar.  It is evident from this picture that the engines have a higher radiance than th
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fuselage but also much less projected area.  The resulting intensity is lower for the 

engines than for the fuselage as portrayed in Figure 4-3. 

 The intensities shown in Figure 4-3 are the total intensities for each aircraft part.  

These intensities can be further broken down into self emission and reflected portions as 

depicted in Figure 4-5.  The reflected intensity represents other aircraft parts, earth shine, 

and/or sky shine reflecting off the specified aircraft component.  At longer wavelengths, 

the earth and sky shine can be fairly significant as demonstrated in the figure (note that 

the graphs in Figure 4-5 are each scaled differently). 

Apparent Radiance, at EL = 0°, Az = 90°, (longwave IR, 8-12 µm) 

Figure 4-4:  Broads
radiance.  Higher 

ide view of the faceted model.  Facets are colored by their 
radiance results in a lighter color.  Since intensity is a 

adian
rojec

r ce/projected area product, the fuselage has a higher intensity due to its large 
p ted area.  The engines have a lower intensity despite having a higher radiance 
since their projected area is much less. 
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The i nsity of the 

aircraft to de e 4-6.  As 

with the intensity, the amount of contribution of each part can be further broken down 

into self emission and reflected components as shown in Figure 4-7.   

ntensity of each selected component is compared to the total inte

termine the contribution of each part.  The result is plotted in Figur

Self Emission ReflectedSelf Emission Reflected
Figure 4-5:  Total intensity of each part can be broken down into a self emission 
component and reflected component.  At long wavelengths, earth and sky shine 
contribute a significant amount to the total intensity of the aircraft.  Notice each 
graph is scaled differently. 

Figure 4-6:  The percent contribution of each major aircraft 
component to the overall intensity of the aircraft. 
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The reflected intensity contributes up to an additional 14% to the overall aircraft intensity 

over a broad range of azimuth angles due to reflections off the fuselage alone.   

s  

a ging just that one.  For example, to study the 

effects of the “Foggy Boston” atmospheric scenario, the intensity is plotted with the 

atmosphere on and off in the longwave IR band.  The results are plotted in Figure 4-8.  

The example used to create Figures 4-3 through 4-7 is just one of many possible 

cenarios using this GUI.  Effects of a particular parameter can be examined by keeping

ll other parameters the same and chan

Self Emission ReflectedSelf Emission Reflected

Figure 4-7:  The self emission and reflected contributions to the overall aircraft 
intensity.  Parameters are set as in Figure 4-1 (LWIR, 0º pitch, etc). 

No Atmosphere (source intensity) With Atmosphere (apparent intensity)No Atmosphere (source intensity) With Atmosphere (apparent intensity)

Figure 4-8:  The intensity of major aircraft components with and without effects of 
the “Foggy Boston” atmospheric scenario.  Note the scaling of the magnitudes. 
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The atmospheric attenuation is quite severe resulting in a drastic decrease in magnitude.  

However, the attenuation is even more severe for the engines than for any other part.  In 

fact, the other aircraft components are proportionally the same in both plots.  Since the 

cool aircraft parts are all at the same temperature, they have the same spectral radiance.  

Therefore any spectral attenuation function would affect all of those parts the same.  As 

the blackbody curves in Chapter II showed, warmer bodies peak at shorter wavelengths.  

The  

atte

4.9 Faceted Model Viewer 

 

their radiance provides a better contrast than plotting the intensity, which is the radiance 

multiplied with the projected area.  This type of figure assists in identifying hot parts, 

reflections, and obscurations but obviously can only display one azimuth angle at a time.  

To view a specific angle, the user can enter the same azimuth angle in the start and stop 

text windows.  Otherwise, the GUI finds the peak intensity for the selected part within the 

selected range.  For example, Figure 4-9 shows the intensity of the fuselage at MWIR 

with the aircraft at 20º pitch, and no atmospheric effects.  The intensity of the fuselage 

has quite a bit of jaggedness caused by reflections of hot engine parts off the fuselage.  

The faceted model viewer allows the user to examine a peak to ascertain the cause or 

validity of t

refore, the warmer engines will be affected differently by the atmospheric

nuation.  

The intensity and percent contribution plots are great analytical tools especially 

since they provide full azimuth data.  However, sometimes these plots lack the physical 

insight as to the cause certain features.  To address this, the GUI can portray the faceted 

aircraft with the facets colored according to their radiance.  Coloring the facets based on

he peak.  In Figure 4-9, a small peak somewhere between 0º and 10º is 
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singled out for inspection.  Selecting the fuselage as the major component to examine, 

entering a range of 0º to 10º, and then pressing the View Model button results in Figure  

4-10. 

The first piece of information that can be gleaned from Figure 4-10 is that the 

peak intensity of the fuselage occurs at 6º given the inputs entered.  The next obvious 

feature is the engine reflection off the fuselage.  Even though the engine hot parts are not 

visible to the viewer, their reflections may be.  Notice, there is also another small 

reflection on the fuselage just left of the primary reflection.   

Spike of 
interest
Spike of 
interest

Figure 4-9:  The fuselage intensity for an aircraft at MWIR, 20º pitch, 

reflection of hot engine parts off the fuselage.  One peak is singled out 
no atmospheric attenuation.  The jaggedness of the signal is caused by 

for inspection. 
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Figur
interest from

e 4-10

observer, th

4.10 Summa

The g

objective of d

user can cont

response, atm

properties.  R

for operation

emission, and

useful in dete

emission or r

signature tren
Source Radiance, at EL = 20°, Az = 6°, (midwave IR, 8-12 µm
Engine 
Reflection

Engine 
Reflection

 Figure 4-9.  Even though the engine hot parts are not viewable by the 
:  The image created by the faceted model viewer to examine the spike of 

eir reflections are. 

ry 

raphical user interface, with the radiometric model at its core, satisfies the 

eveloping a desktop tool capable of identifying IR signature trends.  The 

rol aircraft part temperatures, IR band of interest, normalized input system 

ospheric scenarios or lack of atmosphere, aircraft angles, and surface 

eal input responses, atmospheric scenarios, and paint schemes can be added 

ally realistic analysis.  The output intensity graphs include total, self-

 reflection signatures for the aircraft or its components.  This is particularly 

rmining the source of a particular signature trend; whether it is due to self 

eflection.  Finally, the faceted model viewer provides additional insight into 

ds by depicting the faceted model colored by its radiance.   
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 There are certainly improvements that can be made to the radiometric model, but 

more importantly, the model must be validated to determine the amount of error between 

the computational model and a physical model.  Model validation and other 

recommendations are discussed in the next chapter. 
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5V   Recommendations and Conclusions 

5.1 Overview 

There are more important 

than model validation.  Model validation is necessary to determine the amount of error in 

the radiometric model and whether it is useful as a trend analysis tool.  Plume modeling, 

MODTRAN interface, spectral data access, and obscuration/reflection algorithm 

improvements make up the other recommendations and are listed in order of importance 

after model validation.    

5.2 Model Validation 

s the 

m ned, the desktop tool created as a result of this thesis 

is a trend analysis tool.  It was not intended to be as precise as other existing IR codes.  

nds, the user can then focus their efforts using more robust IR codes.   

tion algorithms 

are several recommendations for future work, but none 

Of the recommendations for future work on this thesis, model validation i

ost crucial.  As previously mentio

By identifying tre

Even as a trend analysis tool, a certain level of confidence is required in the 

model.  This is where model validation is required.  As mentioned in Section 3.7, a 1:100 

scale plastic model of a 747-400 was acquired and painted gloss black for model 

validation.  However, it was determined that even with the insulation, the plastic model 

would cool too quickly.  Heater strips were considered, but even then temperature control 

would be difficult to maintain.  Due to these concerns, validation with the plastic model 

was not accomplished.   

An alternative to the plastic model is to use a plumbed (for temperature control), 

simply-shaped model for validation.  The model should still consider surface interactions 

by using multiple parts.  This would exercise the obscuration and reflec
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used in the radiometric model.  Of course, this would require a new faceted model be 

created using the concepts presented in Chapter III.  New obscuration and reflection 

matrices would also need to be generated.   

Regardless of the physical model used for validation, the challenge would be in 

correlating the data from the IR range with that produced by the radiometric model 

describ  this thesis.  Errors and limitations inherent in the IR range measurements 

would have to be considered when comparing the data.     

5.3 Plume Modeling 

The effects of the plume were not considered in the radiometric model.  The 

plume’s radiance, reflections off aircraft components, and plume self-absorption should 

be incorporated into the model.  The added contribution from the plume would be more 

significant at the midwave IR band.  Plume modeling would require an understanding of 

the radiometry of hot gases and gas flows.   

5.4 MODTRAN Interface 

Currently, the sky and earth are both assumed to have Lambertian radiances based 

on constant temperatures.  For added realism, the sky and earth spectral radiances can be 

calculated by PLEXUS and incorporated into the model.  Also, the atmospheric path 

from the aircraft to the earth based on its altitude is currently not considered when 

determining earth shine.  While this thesis project avoided using a direct interface with 

MODTRAN, such an interface may be required to increase the fidelity of the model.    

5.5 Spectral Data Access 

Presently all spectral data is integrated early in the process then assigned to each 

facet as its radiance.  Furthermore, projected area analysis and angle-dependent surface 

ed in

5-2 



 

properties are applied t 0º.  The resulting data 

1 (number of facets) by 361 (azimuth range) matrix.  

Further

determines that the overall model error is acceptable, then 

s is not of high priority. 
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too far 

 further isolate the source of the signature.  And finally, the 

faceted

o each facet for an azimuth range of 0º to 36

is stored and manipulated as a 579

 insight could be gleaned by carrying the spectral data to the end.  This would 

require a 3-D matrix where the third dimension is determined by the spectral resolution.   

5.6 Obscuration and Reflection Algorithms 

Using a radiosity or ray-casting approach to create the obscuration and reflection 

matrices would eliminate the errors inherent in the algorithms used for this thesis.  

However, if validation 

correcting these algorithm

onclusion 

The recommendations provided in this chapter will make the overall model more 

robust, but may increase computational times.  The same is true for increasing the faceted 

model resolution to minimize facet area errors.  Care should be taken to avoid straying

from the purpose of thesis.   

The objective of this thesis was to develop a desktop tool capable of identifying 

IR signature trends of a large commercial aircraft.  The graphical user interface, using the 

radiometric model as its computational engine, is that tool.  The 360º intensity graphs 

display the IR signature trends of the aircraft as a whole or by part contribution.  

Additionally, the specific IR signature can be broken down into self emission and 

reflection components to

 model viewer provides additional physical insight into the cause of signature 

phenomenon.  As intended, planners can focus their use of robust IR codes to accurately 

evaluate IR signatures based on the trends produced by the radiometric model.  

5-3 



 

6Appendix A  PLEXUS-Generated Atmospheric Scenarios 

Simulation Variable
Table A-1:  Atmospheric Scenario #1 

Setting/Value

IR Band MWIR/LWIR 
LOS definition Sensor geometry 
Path length 6000 ft 
Azimuth angle 20º 
Zenith angle 70º 
Location Las Vegas, NV 
Location altitude 2205 ft 
Date 9 Dec 04 
Time 1600 
Weather conditions Clear day/no significant changes 
Visibility Low visibility, 1km 
Aerosol environment Desert 
Industrial influence Direct influence 

 

Figure A-1:  MWIR/LWIR spectral atmospheric windows and path radiances for 
Scenario #1.  Conditions are listed in Table A-1. 
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Table A-2:  Atmospheric Scenario #2 
Simulation Variable Setting/Value

IR Band MWIR/LWIR 
LOS definition Sensor geometry 
Path length 6000 ft 
Azimuth angle 20º 
Zenith angle 70º 
Location Biloxi, MS 
Location altitude 34 ft 
Date 9 Dec 04 
Time 2200 
Weather conditions Night/just rained 
Visibility Normal low visibility, 5km 
Aerosol environment Maritime 
Industrial influence N/A 

Figure A-2:  MWIR/LWIR spectral atmospheric windows and path radiances for 
Scenario #2.  Conditions are listed in Table A-2. 
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Table A-3:  Atmospheric Scenario #3 
Simulation Variable Setting/Value

IR Band MWIR/LWIR 
LOS definition Sensor geometry 
Path length 6000 ft 
Azimuth angle 20º 
Zenith angle 70º 
Location Boston, MA 
Location altitude  19 ft
Date 9 Dec 04 
Time 0800 
Weather conditions  Foggy day
Visibility ely low visibility, 0.2km Extrem
Aerosol environment N/A 
Industrial influence N/A 

Figure A-3:  MWIR/LWIR spectral atmospheric windows and path radiances for 
Scenario #3.  Conditions are listed in Table A-3. 
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Table A-4:  Atmospheric Scenario #4 
Simulation Variable Setting/Value

IR Band MWIR/LWIR 
LOS definition Sensor geometry 
Path length 6000 ft 
Azimuth angle 20º 
Zenith angle 70º 
Location Los Angeles, CA 
Location altitude 126 ft 
Date 9 Dec 04 
Time 1600 
Weather conditions Clear day/no significant weather 
Visibility Normal low visibility, 5km 
Aerosol environment Urban 
Industrial influence N/A 

Figure A-4:  MWIR/LWIR spectral atmospheric windows and path radiances for 
Scenario #4.  Conditions are listed in Table A-4. 
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Table A-5:  Atmospheric Scenario #5 
Simulation Variable Setting/Value

IR Band MWIR/LWIR 
LOS definition Sensor geometry 
Path length 6000 ft 
Azimuth angle 20º 
Zenith angle 70º 
Location Albuquerque, NM 
Location altitude 5355 ft 
Date 9 Dec 04 
Time 1600 
Weather conditions Clear day/extremely clear and calm 
Visibility High visibility, 50km 
Aerosol environment Desert 
Industrial influence None 

Figure A-5:  MWIR/LWIR spectral atmospheric windows and path radiances for 
Scenario #5.  Conditions are listed in Table A-5. 
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 System Input Responses

A B

C D

A B

C D

Figure B-1:  The four generic normalized system input responses available through the 
graphical user interface.  These generic responses are the same for the longwave IR 
band.  A:  The ideal response is rectangular window with a magnitude of one.  B,C:  
These filters are similar to an indium antimonide detector at MWIR as shown in 
Figure 3-30.  D:  This response is just a generic fictional response.  Actual input 
responses at each of the IR bands can be added to the radiometric model. 
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Figure C-1:  The complete aircraft parts breakdown.  The complete engine breakdown 
is shown in Figure 3-6. 
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